Sääasema Pertteli


Real Time Images of the Sun

Click for time-lapse image of the sun
SOHO EIT 284 image of the sun

The sun is constantly monitored for sun spots and coronal mass ejections. EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.

Real Time Solar X-ray and Solar Wind

Real-Time Solar Wind
Graph showing Real-Time Solar Wind
Real-Time Solar Wind data broadcast from NASA's ACE satellite.
Solar X-ray Flux
Graph showing Real-Time Solar X-ray Flux
This plot shows 3-days of 5-minute solar x-ray flux values measured on the SWPC primary and secondary GOES satellites.
Satellite Environment Plot
Graph showing Real-Time Satellite Environment Plot
The Satellite Environment Plot combines satellite and ground-based data to provide an overview of the current geosynchronous satellite environment.

Solar Cycle

Sun Spot Number Progression
Graph showing Sun Spot Number Progression
This plot shows the Solar Cycle Sun Spot Number Progression.
F10.7cm Radio Flux Progression
Graph showing F10.7cm Radio Flux Progression
This plot shows the F10.7cm Radio Flux Progression.
Ap Progression
Graph showing Ap Progression
This plot shows the Solar Cycle Ap Progression.

The Solar Cycle is observed by counting the frequency and placement of sunspots visible on the Sun. Solar minimum occurred in December, 2008.
Solar maximum was expected to occur in May, 2013.

Auroral Activity Extrapolated from NOAA POES

Northern Hemi Auroral Map
Current Northern hemispheric power input map
Southern Hemi Auroral Map
Current Southern hemispheric power input map

Instruments on board the NOAA Polar-orbiting Operational Environmental Satellite (POES) continually monitor the power flux carried by the protons and electrons that produce aurora in the atmosphere. SWPC has developed a technique that uses the power flux observations obtained during a single pass of the satellite over a polar region (which takes about 25 minutes) to estimate the total power deposited in an entire polar region by these auroral particles. The power input estimate is converted to an auroral activity index that ranges from 1 to 10.

VHF and HF Band Conditions


Space Weather Images and Information (excluded from copyright) courtesy of:
NOAA / NWS Space Weather Prediction Center
Mauna Loa Solar Observatory (HAO/NCAR)

Space Weather links:
3-Day Forecast of Solar and Geophysical Activity
Space Weather Overview
LASCO Coronagraph
Real-Time Solar Wind
Space Weather Advisory Outlooks
Space Weather Forecast Disussions
Space Weather Alerts, Watches and Warnings
Solar and Heliospheric Observatory (SOHO)
The Very Latest SOHO Images

Powered by Space Weather PHP script by Mike Challis

Privacy Policy | Ota yhteyttä © 2006-2016 nordicweather.net | online | Maksimi tänään: